136 research outputs found

    New long-term mass-balance series for the Swiss Alps

    Get PDF
    In this study we present 19 new or re-analysed series of glacier-wide seasonal mass balance for the Swiss Alps based on direct measurements. The records partly start around 1920 and continue until today. Previously unpublished and unevaluated observations of point winter and annual balance are compiled from various sources and archives. These highly valuable datasets have not yet been consistently evaluated and were thus unavailable to the scientific community. Using distributed modelling for spatial interpolation and extrapolation and homogenization of the point measurements, we infer continuous series of area-averaged mass balance. The results are validated against independent decadal ice volume changes from photogrammetric surveys. Six of the new seasonal series cover 60 years and more and add a substantial amount of information on the variations of regional glacier mass change. This will strengthen the worldwide collection of glacier monitoring data, especially for the data-sparse period before the 1980s. We compare our results to existing long-term series and present an updated assessment of mass-balance variability and glacier sensitivity throughout the European Alps

    Long-term uncertainty of hydropower revenue due to climate change and electricity prices

    Get PDF
    Hydropower represents the world’s largest renewable energy source. As a flexible technology, it enhances reliability and security of the electricity system. However, climate change and market liberalization may hinder investment due to the evolution of water runoffs and electricity prices. Both alter expected revenue and bring uncertainty. It increases risk and deters investment. Our research assesses how climate change and market fluctuation affect annual revenue. But this paper focuses on the uncertainty, rather than on forecasting. This transdisciplinary topic is investigated by means of a mixed method, i.e. both quantitative and qualitative. The quantitative approach uses established models in natural sciences and economics. The uncertainty is accounted for by applying various scenarios and various datasets coming from different models. Based on those results, uncertainty is discussed through an analysis discerning three dimensions of uncertainty. Uncertainty analysis requires the assessment of a large panel of models and data sets. It is therefore rarely carried out. The originality of the paper also lies on the combination of quantitative established models with a qualitative analysis. The results surprisingly show that the greenhouse gas scenarios may in fact represent a low source of uncertainty, unlike electricity prices. Like forecasting, the main uncertainties are actually case study related and depend on the investigated variables. It is also shown that the nature of uncertainty evolves. Runoff uncertainty goes from variability, i.e. inherent randomness, to epistemic, i.e. limitation of science. The reverse situation occurs with the electricity price. The implications for scientists and policy makers are discussed

    The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier

    Get PDF
    Light-absorbing impurities in snow and ice control glacier melt as shortwave radiation represents the main component of the surface energy balance. Here, we investigate the long-term effect of snow impurities, i.e., mineral dust and black carbon (BC), on albedo and glacier mass balance. The analysis was performed over the period 1914–2014 for two sites on Claridenfirn, Swiss Alps, where an outstanding 100-year record of seasonal mass balance measurements is available. Information on atmospheric deposition of mineral dust and BC over the last century was retrieved from two firn/ice cores of high-alpine sites. A combined mass balance and snow/firn layer model was employed to assess the effects of melt and accumulation processes on the impurity concentration at the surface and thus on albedo and glacier mass balance. Compared to pure snow conditions, the presence of Saharan dust and BC lowered the mean annual albedo by 0.04–0.06 depending on the location on the glacier. Consequently, annual melt was increased by 15–19 %, and the mean annual mass balance was reduced by about 280–490 mm w.e. BC clearly dominated absorption which is about 3 times higher than that of mineral dust. The upper site has experienced mainly positive mass balances and impurity layers were continuously buried whereas at the lower site, surface albedo was more strongly influenced by re-exposure of dust and BC-enriched layers due to frequent years with negative mass balances

    Application of Electrochemical Impedance Spectroscopy on Different Battery Circuits

    Get PDF
    For the operation of a battery pack, the cell state estimation plays a central role. For that, enough information about the current charge condition (SoC, state of charge) and the health status (SoH, state of health) of the individual cells or cell strings must be available. One way to draw out conclusions about the state of charge and health provides the electrochemical impedance spectroscopy (EIS) [1]. The test cells are thereby stimulated with an alternating current signal, and the resulting voltage signal is detected. These results in cell impedances, which are addicted to the signal frequencies and the respective cell states. This poster shows an experimental platform which uses the EIS to detect asymmetries in SoC and/or SoH on circuited cells. For that, the behavior of the amplitudes and frequencies of the signals should be analyzed, because for the calculation of the precise impedance, these factors are crucial. Thereby the required alternating current and voltage signals are acquired and analyzed separately for each single cell. As cell type lithium iron-phosphate round cells of the size 18650 are used. The investigations are made on a series circuit (Fig.1) made up of three cells and on a parallel circuit made up of two strings, each having two cells in series. It shows that both a series and a parallel connection within the working range the experimental platform impedances of individual cells can be determined. For these cases, differences in state of charge and state of health can be highlighted and assigned to the respective cells

    Estimating the ice thickness of mountain glaciers with a shape optimization algorithm using surface topography and mass-balance

    Get PDF
    We present a shape optimization algorithm to estimate the ice thickness distribution within a two-dimensional, non-sliding mountain glacier, given a transient surface geometry and a mass-balance distribution. The approach is based on the minimization of the surface topography misfit at the end of the glacier's evolution in the shallow ice approximation of ice flow. Neither filtering of the surface topography where its gradient vanishes nor interpolation of the basal shear stress is involved. Novelty of the presented shape optimization algorithm is the use of surface topography and mass-balance only within a time-dependent Lagrangian approach for moving-boundary glaciers. On real-world inspired geometries, it is shown to produce estimations of even better quality in smaller time than the recently proposed steady and transient inverse methods. A sensitivity analysis completes the study and evinces the method's higher susceptibility to perturbations in the surface topography than in surface mass-balance or rate facto

    The New Swiss Glacier Inventory SGI2016: From a Topographical to a Glaciological Dataset

    Get PDF
    Glaciers in Switzerland are shrinking rapidly in response to ongoing climate change. Repeated glacier inventories are key to monitor such changes at the regional scale. Here we present the new Swiss Glacier Inventory 2016 (SGI2016) that has been acquired based on sub-meter resolution aerial imagery and digital elevation models, bringing together topographical and glaciological approaches and knowledge. We define the process, workflow and required glaciological adaptations to compile a highly detailed inventory based on the digital Swiss Topographic Landscape model. The SGI2016 provides glacier outlines (areas), supraglacial debris cover and ice divides for all Swiss glaciers referring to the years 2013–2018. The SGI2016 maps 1,400 individual glacier entities with a total surface area of 961 ± 22 km2, whereof 11% (104 km2) are debris-covered. It constitutes the so far most detailed cartographic representation of glacier extent in Switzerland. Interpretation in the context of topographic parameters indicates that glaciers with moderate inclination and low median elevation tend to have highest fractions of supraglacial debris. Glacier-specific area changes since 1973 show the largest relative changes for small and low-elevation glaciers. The analysis further indicates a tendency for glaciers with a high share of supraglacial debris to show larger relative area changes. Between 1973 and 2016, an area change rate of –0.6% a−1 is found. Based on operational data sets and the presented methodology, the Swiss Glacier Inventory will be updated in 6- yr time intervals, leading to a high consistency in future glacier change assessments

    Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps

    Get PDF
    Crystal orientation fabric (COF) analysis provides information about the c-axis orientation of ice grains and the associated anisotropy and microstructural information about deformation and recrystallisation processes within the glacier. This information can be used to introduce modules that fully describe the microstructural anisotropy or at least direction-dependent enhancement factors for glacier modelling. The COF was studied at an ice core that was obtained from the temperate Rhonegletscher, located in the central Swiss Alps. Seven samples, extracted at depths between 2 and 79 m, were analysed with an automatic fabric analyser. The COF analysis revealed conspicuous four-maxima patterns of the c-axis orientations at all depths. Additional data, such as microstructural images, produced during the ice sample preparation process, were considered to interpret these patterns. Furthermore, repeated high-precision global navigation satellite system (GNSS) surveying allowed the local glacier flow direction to be determined. The relative movements of the individual surveying points indicated longitudinal compressive stresses parallel to the glacier flow. Finally, numerical modelling of the ice flow permitted estimation of the local stress distribution. An integrated analysis of all the data sets provided indications and suggestions for the development of the four-maxima patterns. The centroid of the four-maxima patterns of the individual core samples and the coinciding maximum eigenvector approximately align with the compressive stress directions obtained from numerical modelling with an exception for the deepest sample. The clustering of the c axes in four maxima surrounding the predominant compressive stress direction is most likely the result of a fast migration recrystallisation. This interpretation is supported by air bubble analysis of large-area scanning macroscope (LASM) images. Our results indicate that COF studies, which have so far predominantly been performed on cold ice samples from the polar regions, can also provide valuable insights into the stress and strain rate distribution within temperate glaciers

    Regional and Annual Variability in Subglacial Sediment Transport by Water for Two Glaciers in the Swiss Alps

    Get PDF
    Glaciers expel large amounts of water and sediments, and the discharge of both is influenced by glacier retreat. Because the majority of sediment originates subglacially, as opposed to proglacially, focus must be given to subglacial sediment discharge. The latter, however, is poorly constrained. We present a subglacial sediment transport time-series from the Gornergletscher and Aletschgletscher catchments in the Swiss Alps, based on hourly suspended sediment transport data and bedload transport estimates. This dataset is used to identify interannual and regional variability and to quantify the relationship between sediment transport and water discharge. Analysis of the relationship suggests that the access of water to subglacial sediment exerts substantial control on the quantity of sediment discharged. Historical data from Gornergletscher since the 1970's show that elevated amounts of sediment were discharged in the 1980's, following the onset of increasing glacier melt. However, by 2016 and 2017, the sediment discharge had returned to quantities below those in the 1970's, suggesting that sediment discharge may return to an equilibrium over decadal times scales following the onset of a new hydrological regime. Erosion rates for the two catchments (0.28 mm a−1 to 0.49 mm a−1) are lower than in other glacierized catchments of the Swiss Alps (~1 mm a−1). In some years in both catchments, these rates are even less than a third of those reported in earlier decades, highlighting substantial regional and interannual variability in catchment-scale erosion. Empirical models of the relationship between sediment concentration and water discharge, calibrated with the presented 2016–2017 data, fail to capture the elevated sediment discharge over the 1980's. This suggests that processes other than runoff, such as changing access to subglacial sediment by meltwater, were responsible for the increase. Subglacial sediment discharge depends on both water discharge and sediment availability. Therefore, we argue that physically-based models of subglacial sediment transport, that can capture its complex temporal and spatial evolution in response to glacier retreat, are needed to predict and understand a glacier's sediment yield
    • …
    corecore